LP Model Applications in Open Pit Mining

Dr. Necmettin Çetin

Dumlupinar University Faculty of Engineering, Dept. Of Mining

Kütahya-Turkey

necmettin.cetinnecmettin.cetin@dumlupinar.e du.tr

Implementation of Green and Digital Technologies on International Educational Environments 3- 10 October 20022

Outline

- Introduction
- Linear Programming (LP)
- Applications in Mining Industry
- Example Problem1: Optimal Route Selection in Open Pit Mining (Truck Dispatching Problem)
- Example Problem2: Ultimate Pit Limit by Positive Moving Cone
- Example Problme3: Cutoff Grade Optimization Problem

Introduction

- Mathematical Programming: A mathematical programming model is a decision model for planning decisions that optimize an objective function and satisfy limitations imposed by mathematical constraints .
- O **Optimization:** Finding a solution which results in either the minimum cost or

maximum performance under the given set of conditions .

Linear Programming (LP)

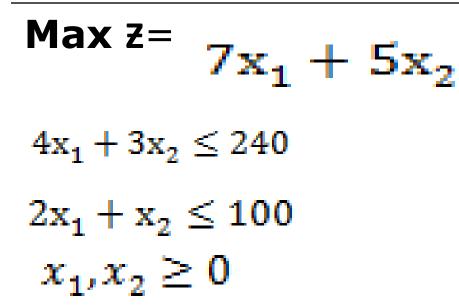
○ In mathematical notation, a linear programming problem is expressed as follows:

Max (Min) Z = C X (objective function)

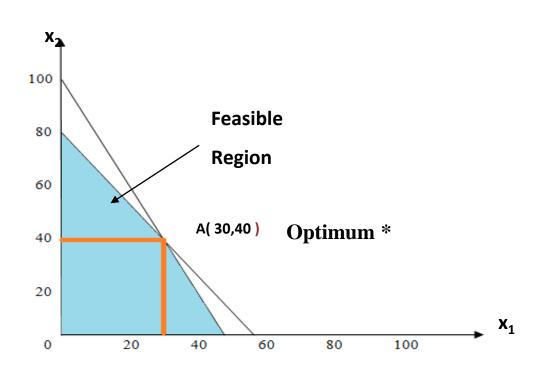
Subject to :

$A X \leq b$	(set of constraints)
$X \ge 0$	(non-negativity)

Where

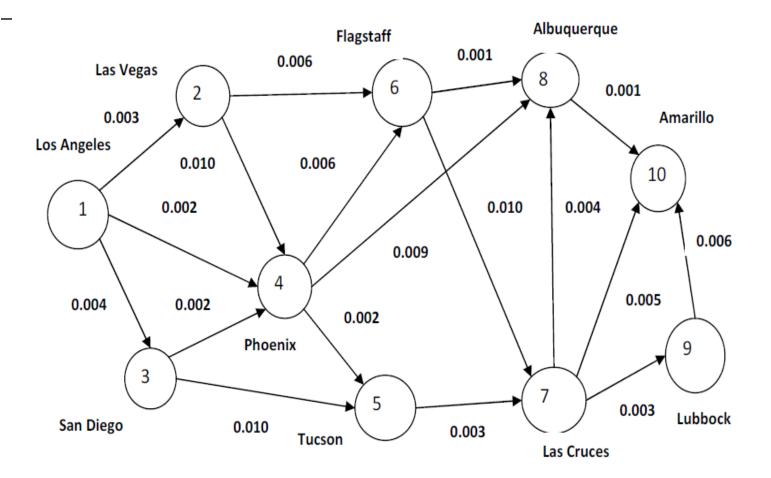

C: row vector of objective function coefficients,

X: column vector of decisions variables,


A: matrix of constraints coefficients,

b: column vector of right hand side values, representing available resources

Linear Programming (LP) Continued


Linear Programming (LP) Example –Graphical Solution

Applications in Mining Industry

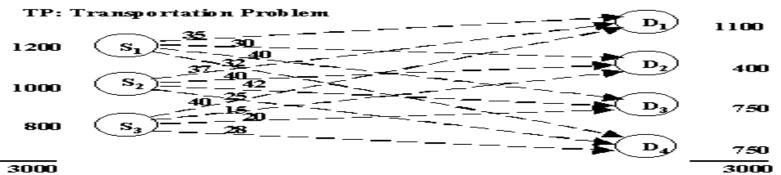
- O Determining Ultimate Pit limits,
- Finding the optimal sequence of blocks extraction,
- Finding the optimal blending pattern,
- Cutoff grade optimization,
- \bigcirc Finding the optimal places for blasting,
- Truck Dispatching in open pit
- O Equipment Replacements
- \bigcirc and many more..

Network Diagram for Safety Trans Company (STC)

Spreadsheet and Excel Solver Model for STC

	Giris Ekle	Sayfa D	Düzeni Formüller	Veri	Gözden Gecir	Görünüm Geliştirici	Eklentiler PDF	Architect 6 Cr	eator PDF Arch	- 144		- ¤
	F36	sayra L	f _≪ =ÇAR			Gorunum Geliştirici	Eklentiler PDF7	Architect 6 Cr	eator PDF Arcr	hitect		<u> </u>
1	A	В	C C	D	E	F	G	н			к	L M
	A	В	C				G			,	ĸ	
				Safe	ety Trans (Company						
3												
4	Select Route ?					Probability of	Probability of			Net Flow =	Supply =-1	
5	1 = γes, 0 = no		From		То	an Accident	No Accident		Node	Inflow-Outflow		
6	0	1	Los Angeles	2	Las Vegas	0,003	1,000	1	Los Angeles	0	-1	
7	0	1	Los Angeles	3	San Diego	0,004	1,000	2	Las Vegas	0	0	
8	0	1	Los Angeles	4	Phenix	0,002	1,000	3	San Diego	0	0	
9	0	2	Las Vegas	4	Phenix	0,010	1,000	4	Phenix	0	0	
10	0	2	Las Vegas	6	Flagstaff	0,006	1,000	5	Tucson	0	0	
11	0	3	San Diego	4	Phenix	0,002	1,000	6	Flagstaff	0	0	
12	0	3	San Diego	5	Tucson	0,010	1,000	7	Las Cruces	0	0	
13	0	4	Phenix	5	Tucson	0,002	1,000	8	Albuquerque		0	
14	0	4	Phenix	6	Flagstaff	0,006	1,000	9	Lubbock	0	0	
15	0	4	Phenix	8	Albuquerque		1,000		Amarillo	0	1	
16	0	5	Tucson	7	Las Cruces	0,003	1,000	Çözücü l	Parametreleri			×
17 18	0	6	Flagstaff Flagstaff	8		0,010 0.001	1,000	HedefH	ücre: \$F\$36	1		Çöz
	0	7	Las Cruces	8	Albuquerque		1,000	Eşittir:			Değer: 0	
19	0	7	Las Cruces	9	Albuquerque		1,000	Değişer	Hücreler:		gegen o	Kapat
20 21	0	7	Las Cruces	10	Lubbock	0,003	1,000 1,000	\$A\$6:	\$A\$23	5	Tahmin	
21 22	0	8	Albuquerque	10	Amarillo	0,005	1,000	Kisitlam	alar			
22	0	9	Lubbock	10	Amarillo	0,006	1,000		\$A\$23 = ikili düzen			Seçenekler
23 24	0	3	LUDDOCK	10	Amarino	Probability of Safe Trip		\$3\$6:\$	3\$15 = \$K\$6:\$K\$15	· · · · · · · · · · · · · · · · · · ·	Ekle	
25						Probability of Sale Trip	1,000				Değiştir	Tümünü Sıfirl
26											Sil	
27												Yardım
28												
29												
30												
31												
32												
33												
34												
35												
36							-					
37 38												
38 39												
39 40												
40 41												
12												
(· ·		ru 1 🔰 Sar	yfa1 / Sayfa2 / S	ayfa3 🧹	2 .			i 4		Ш		
	ter 🎦											

Spreadsheet and Optimal Solver Output for STC


~	Giriş Ekle	Sayfa D		Veri	Gözden Geçir	Görünüm Geliştirici	Eklentiler PDF A	rchitect 6 C	reator PDF Arch	itect			- 10
	G24	- (°	<i>f</i> ∗ =ÇARF			_	_						
	A	В	С	D	E	F	G	н	1	J	К	L	м
				Safe	ty Trans (Company							
						Dealer Hilling of	Barla Lilliana (N	0		
	lect Route ?		-		-	Probability of	Probability of			Net Flow =	Supply =-1		
1:	= yes, 0 = no		From	_	То	an Accident	No Accident		Node	Inflow-Outflow			
	0	1	Los Angeles	2	Las Vegas	0,003	1,000	1	Los Angeles	-1	-1		
	0	1	Los Angeles	3	San Diego	0,004	1,000	2	Las Vegas	0	0		
	1	1	Los Angeles	4	Phenix	0,002	0,998	3	San Diego	0	0		
	0	2	Las Vegas	4	Phenix	0,010	1,000	4	Phenix	0	0		
	0	2	Las Vegas	6	Flagstaff	0,006	1,000	5	Tucson	0	0		
	0	3	San Diego	4	Phenix	0,002	1,000	6	Flagstaff	0	0		
	0	3	San Diego	5	Tucson	0,010	1,000	7	Las Cruces	0	0		
	0	4	Phenix	5	Tucson	0,002	1,000	8	Albuquerque	0	0		
	1	4	Phenix	6	Flagstaff	0,006	0,994	9	Lubbock	0	0		
	0	4	Phenix	8	Albuquerque	0,009	1,000	10	Amarillo	1	1		
_	0	5	Tucson	7	Las Cruces	0,003	1,000						
	0	6	Flagstaff	7	Las Cruces	0,010	1,000						
	1	6	Flagstaff	8	Albuquerque	0,001	0,999						
	0	7	Las Cruces	8	Albuquerque	0,004	1,000						
	0	7	Las Cruces	9	Lubbock	0,003	1,000						
	0	7	Las Cruces	10	Amarillo	0,005	1,000						
2	1	8	Albuquerque	10	Amarillo	0,001	0,999						
	0	9	Lubbock	10	Amarillo	0,006	1,000						
						Probability of Safe Trip	0,990						
_													
-													
-													
-													
•	M Yanıt Raporu	1 / Ya	nit Raporu 2 Say	fa1 Sa	ayfa2 / Sayfa3 /	*	1						

Network Models

Network Models

Presentation of a Network Problem by:

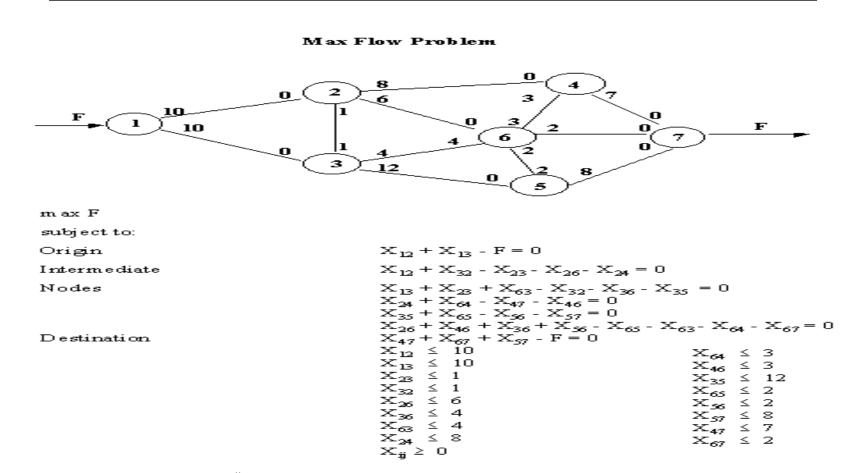
- A set of nodes
- A set of arcs
- A cost function for each arc

LP Form ulation: Min

 $35X_{11} + 30X_{12} + 40X_{13} + 32X_{14} + 37X_{21} + 40X_{22} + 42X_{23} + 25X_{24} + 40X_{31} + 15X_{32} + 20X_{33} + 28X_{34}$

subject to

LINDO Model for Transportation Problem


LINDO - [D:\LINDO61\transportation.txt]

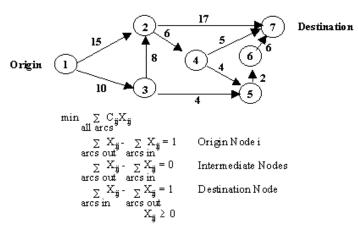
📲 File Edit Solve Reports Window Help	р				
D 🛎 🗣 🖶 🍠 🔺 🖻 🛍 🗞 🖂 🕒	ΣΣ	💿 💿	🖂 🔍 🖂	,5- BB 💀	? №?
1					
! LP Model for Transportation Pro	blem				
<pre>! ! X<ij> = Denote the flow along a</ij></pre>			V 2 2		
: A<1]> - Denote the flow along a	ire (1 68 J) BY	A1).		
Min 35 X11 + 30 X12 + 40 X13 + 3	2 X1	4 + 37 X21	+ 40 X22	+ 42 X23 +	25 X24
+ 40 X31 + 15 X32 + 20 X33 +					
SUBJECT TO					
! ! Demand constraints:					
C1) X11 + X12 + X13 + X14	~=	1200			
	~=	1000			
	<=	800			
C4) X11 + X21 + X31	>=	1100			
	>=	400			
		750			
	>=	750			
C8) X11 >= 0 C9) X12 >= 0					
(2) $X12 >= 0(210) X13 >= 0$					
C11) X14 >= 0					
C12) X21 >= 0					
C13) X22 >= 0					
C14) X23 >= 0					
C15) X24 >= 0					
C16) X31 >= 0					
C17) X32 >= 0 C18) X33 >= 0					
(13) $X33 >= 0(19)$ $X34 >= 0$					
$(20) \times 41 >= 0$					
C21) X42 >= 0					
C22) X43 >= 0					
C23) X44 >= 0					
END					
i i i i i i i i i i i i i i i i i i i					
-					

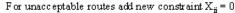
LINDO Output for Transportation Problem

🗧 File Edit	Solve Reports Window	Help		
) 🛋 🗠 🖂			5 88 3	? №?
LP OPTIMUM	FOUND AT STEP	6		
OBJE	CTIVE FUNCTION VALU	JE .		
1)	84000.00			
VARIABLE	VALUE	REDUCED COST		
×11	850.000000	0.00000		
X12	350.000000	0.00000		
X13	0.00000	5.000000		
X14	0.00000	9.000000		
X21	250.000000	0.00000		
X22	0.00000	8.000000		
X23	0.00000	5.000000		
X24	750.000000	0.00000		
X31	0.00000	20.000000		
X32	50.000000	0.00000		
X33	750.000000	0.00000		
X34	0.00000	20.000000		
X41	0.000000	0.00000		
X42	0.000000	0.00000		
X43	0.00000	0.00000		
X44	0.000000	0.000000		
ROW	SLACK OR SURPLUS	DUAL PRICES		
C1)	0.000000	2.000000		
C2)	0.000000	0.00000		
C3)	0.000000	17.000000		
C4)	0.000000	-37.000000		
C5)	0.000000	-32.000000		
C6)	0.000000	-37.000000		
C7)	0.000000	-25.000000		
C8)	850.000000	0.000000		
(29)	350.000000	0.000000		
C10)	0.000000	0.000000		
C11)	0.00000	0.00000		
C12)	250.000000	0.00000		
C13)	0.000000	0.00000		
C14)	0.000000	0.000000		
C15)	750.000000	0.000000		
C16)	0.000000	0.000000		
C17)	50.000000	0.00000		
C18)	750.000000	0.00000		
C19)	0.000000	0.00000		
C20)	0.000000	0.000000		
C21)	0.000000	0.000000		
	0.000000	0.000000		
C22)				

Network Models – Max Flow Problems

LINDO Model for Max Flow Problem


端 LINDO File Edit Solve Reports Window Help	- 🗆 ×
C:\LINDO61\maxflow	
! ! LP Model for Max Flow ExampleHaulage Problem	^
X < ij > = Denote the flow along arc (i to j) by Xij.	
MAX F	
SUBJECT TO	
<pre> Demand constraints: Lo</pre>	
	∨
	9 . Tup 16:33
- = P = 💼 🧰 🥭 😑 🞯 🚾 🚟 🛷	x ^R ∧ TUR 10:33 ■


LINDO Output for Max Flow Problem

LP OPTIMUM	FOUND AT STEP	10
OBJ	ECTIVE FUNCTION	VALUE
1)	17.00000	
VARIABLE	VALUE	REDUCED COST
E	17.00000	0.000000
X12	10.00000	0.000000
X32	0.00000	0.000000
X23	0.00000	0.000000
X24	7.00000	0.000000
X26	3.00000	0.000000
X13	7.00000	0.000000
X33	1.00000	0.000000
X36	0.00000	0.000000
X35	8.00000	0.000000
X64	0.00000	0.000000
X47	7.00000	0.000000
X46	0.00000	0.000000
X65	0.00000	0.000000
X56	0.00000	0.000000
X57	8.00000	0.000000
X63	1.00000	0.000000
X67	2.00000	0.000000

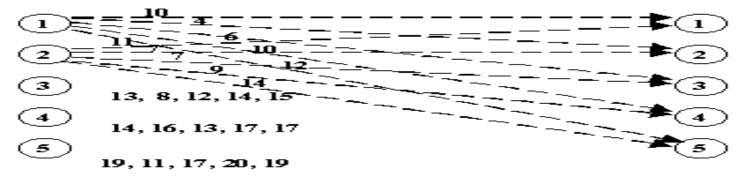
Network Models – Shortest Path Problems

Shortest Path Problem

LINDO Model for Shortest Path Problem

NDO - [D:\LINDO61\ShortesPath]	- 0
e Edit Solve Reports Window Help	-
Model for Shortest Path Example Problem	
j> = Denote the cost along arc (i to j) by Xij.	
15 X12 + 10 X13 + 8 X32 + 6 X24 + 17 X27 + 4 X35 + 5 X47 + 4 X45 + 2 X56 + 6 X67	
ECT TO	
mand constraints:	
mand constraints: X12 + X13 = 1	
$x_{12} + x_{32} - x_{24} - x_{27} = 0$	
X13 - X32 - X35 = 0	
X24 - X47 - X45 = 0	
X35 + X45 - X56 = 0	
X56 - X67 = 0	
$x_{27} + x_{47} + x_{67} = 1$	
X12 >= 0 X12 >= 0	
X13 >= 0 X22 >= 0	
227 >= 0	
X45 >= 0	
X56 >= 0	
X65 >= 0	
X35 >= 0	
X47 >= 0	
X67 >= 0	

📲 🔎 🛱 🔒 🦲 🥭 🖾 🚟 🛷


DPÜ, Faculty of Engineering, Mining Eng. Dept. 3-7 October 2022, Kütahya, Turkey ^R ∧ TUR 16:36 **₹**

LINDO Output for Shortest Path Problem

LP OPTIMUM	FOUND AT ST	EP 5	
овл	ECTIVE FUNCT	ION VALUE	
1)	22.0000	0	
VARIABLE	VALUE		REDUCED COST
X12	0.00	0000	0.00000
X13	1.00	0000	0.000000
X32	0.00	0000	3.000000
X24	0.00	0000	0.000000
X27	0.00	0000	10.000000
X35	1.00	0000	0.000000
X47	0.00	0000	4.000000
X45	0.00	0000	11.000000
X56	1.00	0000	0.000000
X67	1.00	0000	0.000000
X65	0.00	0000	0.00000

Network Models – Assignment Problems

Assignment Problem

LP Formulation:

 $\begin{array}{rl} \text{Min} & 10 X_{11} + 4 X_{12} + 6 X_{13} + 10 X_{14} + 12 X_{15} + 11 X_{21} + 7 X_{22} + \\ 7 X_{23} + 9 X_{24} + 14 X_{25} \end{array}$

 $+ 13\tilde{X}_{31} + 8\tilde{X}_{32} + 12\tilde{X}_{33} + 14\tilde{X}_{34} + 15\tilde{X}_{35} + 14\tilde{X}_{41} + 16\tilde{X}_{42} + 13\tilde{X}_{43} + 17\tilde{X}_{44} +$

 $17X_{45} + 19X_{51} + 11X_{52} + 17X_{53} + 20X_{54} + 19X_{55}$

subject to

 $\begin{array}{l} X_{11} + X_{12} + X_{13} + X_{14} + X_{15} = 1 \\ X_{21} + X_{22} + X_{23} + X_{24} + X_{25} = 1 \\ X_{31} + X_{32} + X_{33} + X_{34} + X_{35} = 1 \\ X_{41} + X_{42} + X_{43} + X_{44} + X_{45} = 1 \\ X_{51} + X_{52} + X_{53} + X_{54} + X_{55} = 1 \\ X_{11} + X_{21} + X_{31} + X_{41} + X_{51} = 1 \\ X_{12} + X_{22} + X_{32} + X_{42} + X_{52} = 1 \\ X_{13} + X_{23} + X_{33} + X_{43} + X_{53} = 1 \\ X_{14} + X_{24} + X_{34} + X_{44} + X_{54} = 1 \\ X_{15} + X_{25} + X_{35} + X_{45} + X_{45} = 1 \\ X_{15} + X_{25} + X_{35} + X_{45} + X_{45} = 1 \\ X_{15} + X_{25} + X_{35} + X_{45} + X_{45} = 1 \\ X_{15} + X_{20} + X_{35} + X_{45} + X_{45} = 1 \\ X_{15} + X_{25} + X_{35} + X_{45} + X_{45} = 1 \\ \end{array}$

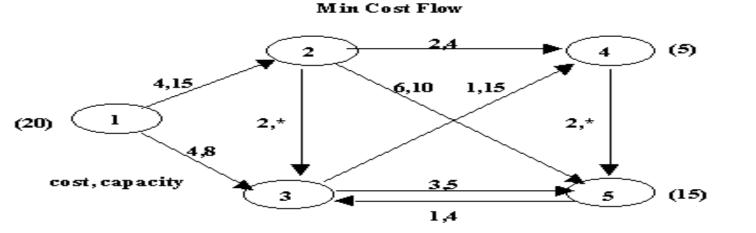
LINDO Model for Assignment Problem

	x 🖻 💼 📎 🖂 🖹)• 🔀 🚦 🛛 🙆 📾		,5 🗷 💀	? №?			
LP Model for A	ssignment Proble	em						
X <ij> = Denote</ij>	the flow along	arc (i to j)	by Xij.					
13 X31 + 8 X	4 X12 + 6 X13 - 32 + 12 X33 + 14 X52 + 17 X53 + 2	4 X34 + 15 X35	+ 14 X41 + 3	1 + 7 X22 + 7 16 X42 + 13 X	X23 + 9 X24 + 43 + 17 X44 + 1	14 X25 + 7 X45 +		
SUBJECT TO								
C2) X21 + X22 + C3) X31 + X32 + C2) X41 + X42 + C3) X51 + X52 + C4) X11 + X21 + C5) X12 + X22 + C6) X13 + X23 + C7) X14 + X24 +	X13 + X14 + X11 X23 + X24 + X23 X33 + X24 + X23 X33 + X44 + X44 X33 + X54 + X55 X31 + X54 + X55 X32 + X41 + X55 X33 + X44 + X55 X34 + X44 + X55 X35 + X45 + X55	5 = 1 5 = 1 5 = 1 5 = 1 1 = 1 2 = 1 3 = 1 4 = 1						
END								
INT X11 INT X12 INT X13 INT X14 INT X15								
INT X21 INT X22 INT X23 INT X24 INT X25								
INT X31 INT X32 INT X34 INT X35								
INT X41 INT X42 INT X43 INT X44 INT X45								

LINDO Output for Assignment Problem

Reports Window

LP OPTIMUM FOUND AT STEP 14 OBJECTIVE VALUE = 55.0000000


NEW INTEGER SOLUTION OF 55.0000000 AT BRANCH 0 PIVOT 14 RE-INSTALLING BEST SOLUTION...

OBJECTIVE FUNCTION VALUE

1) 55.00000

VARIABLE	VALUE	REDUCED COST
X11	0.000000	10.000000
X12	0.000000	4.000000
X13	1.000000	6.000000
X14	0.000000	10.000000
X15	0.000000	12.000000
X21	0.00000	11.000000
X22	0.00000	7.000000
X23	0.00000	7.000000
X24	1.000000	9.000000
X25	0.00000	14.000000
X31	0.00000	13.000000
X32	0.00000	8.000000
X33	0.00000	12.000000
X34	0.00000	14.000000
X35	1.000000	15.000000
X41	1.000000	14.000000
X42	0.00000	16.000000
X43	0.00000	13.000000
X44	0.00000	17.000000
X45	0.00000	17.000000
X51	0.00000	19.000000
X52	1.000000	11.000000
X53	0.00000	17.000000
X54	0.00000	20.000000
X55	0.00000	19.000000

Network Models – Min Cost Problems

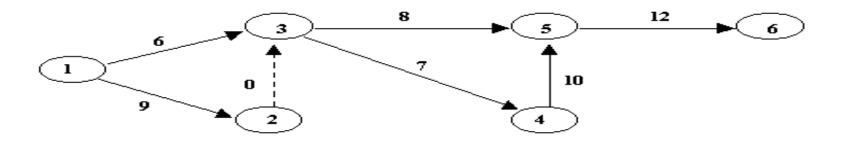
min

 $4X_{12} + 4X_{13} + 2X_{23} + 2X_{24} + 6X_{25} + 1X_{34} + 3X_{35} + 2X_{45} + X_{53}$

subject to:

LINDO Model for Min Cost Problem

LINDO - [D:\LINDOOI\mincost.]


File Edit Solve Reports Window Help
$\square \bowtie \bowtie$
! ! LP Model for Min Cost Problem !
! X <ij> = Denote the flow along arc (i to j) by Xij. !</ij>
Min 4 X12 + 4 X13 + 2 X23 + 2 X24 + 6 X25 + 1 X34 + 3 X35 + 2 X45 + 1 X53
SUBJECT TO
Demand constraints:
$(1) \times 12 + \times 13 <= 20$
C2) $X12 - X23 - X24 - X25 = 0$
(2) $(13 + 123 + 123 + 123 - 123 - 123 = 0$
(6) $(24 + 34 - 345 = 5)$
(7) $(25 + 325 + 325 + 345 - 353 = 15)$
$(28) \times 12 <= 15$
C9) X13 <= 8
C10) X35 <= 5
C11) X24 <= 4
C12) X34 <= 15
C13) X52 <= 10
C14) X53 <= 4
C15) X25 <= 10
C16) X12 >= 0
C17) X13 >= 0
C18) X35 >= 0
C19) X24 >= 0
C20) X34 >= 0
C22) X53 >= 0
C23) X25 >= 0
C24) X23 >= 0
C25) X45 >= 0
END

LINDO Output for min Cost Problem

File Edit	Solve Reports Window	Help		
_] @ ~ 			, 6 6 6	8 1
				3 70
LP OPTIMUM	FOUND AT STEP	7		
OBJI	CTIVE FUNCTION VAL	LUE		
1)	150.0000			
VARIABLE	VALUE	REDUCED COST		
X12	12.000000	0.00000		
X13	8.000000	0.00000		
X23	8.000000	0.00000		
X24	4.000000	0.00000		
X25	0.00000	1.000000		
X34	15.000000	0.00000		
X35	1.000000	0.00000		
X45	14.000000	0.00000		
X53	0.00000	4.000000		
X52	0.000000	0.00000		
ROW	SLACK OR SURPLUS	DUAL PRICES		
C1)	0.00000	0.000000		
C2)	0.00000	-4.000000		
C5)	0.00000	-6.000000		
C6)	0.00000	-7.000000		
C7)	0.00000	-9.000000		
C8)	3.000000	0.00000		
C9)	0.00000	2.000000		
C10)	4.000000	0.00000		
C11)	0.00000	1.000000		
C12)	0.00000	0.00000		
C13)	10.000000	0.00000		
C14)	4.000000	0.00000		
C15)	10.000000	0.00000		
C16)	12.000000	0.00000		
C17)	8.000000	0.00000		
C18)	1.000000	0.00000		
C19)	4.000000	0.00000		
C20)	15.000000	0.00000		
C22)	0.000000	0.000000		
C23)	0.000000	0.000000		
C24) C25)	8.000000	0.000000		
(25)	14.000000	0.000000		

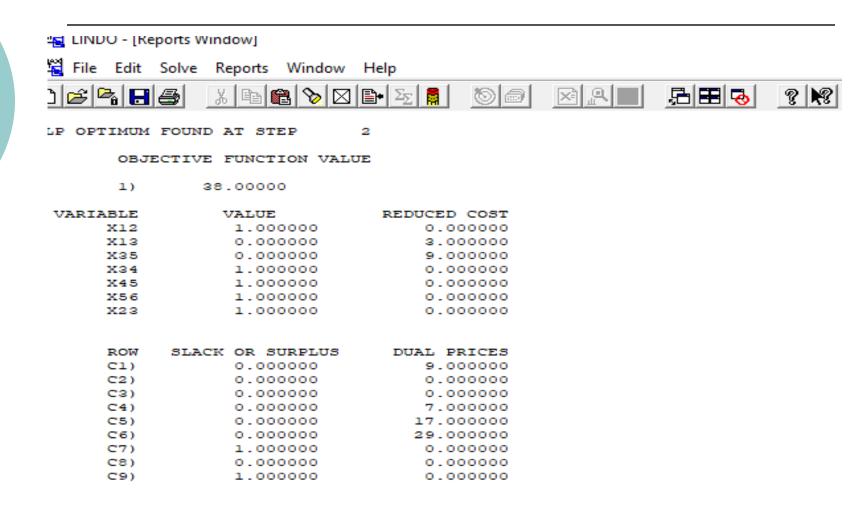
Network Models – Critical Path Problems

Critical Path Method

 $9X_{12} + 6X_{13} + 8X_{35} + 7X_{34} + 10X_{45} + 12X_{56}$

m ax

subject to:

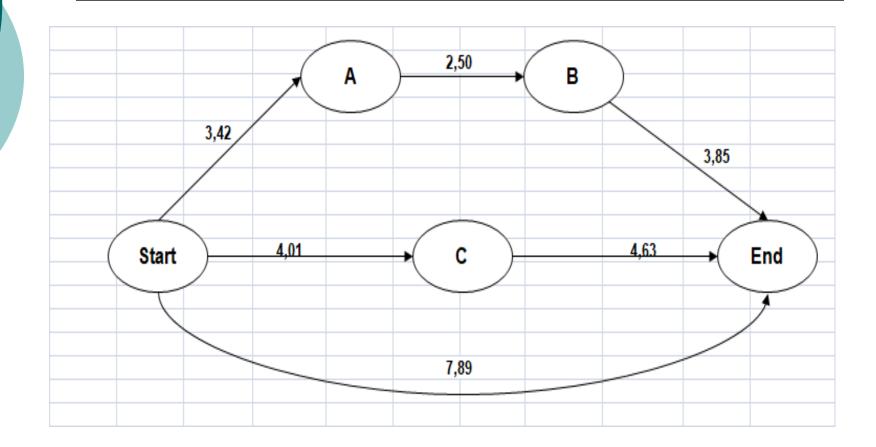

x_{ij} ≥0

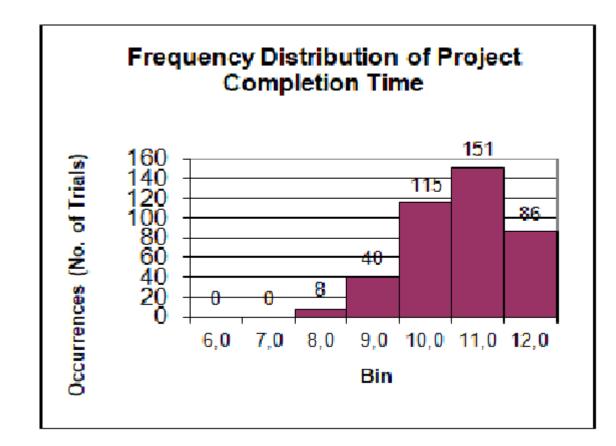
LINDO Model for Critical Path Problem

```
LINDO - [D:\LINDO61\critical_path1.txt]
🕰 File Edit Solve Reports Window Help
                                                      ,5 🗄 🐼
D 🔗 🚰 🛃 🎒
              18 🖻 🖹 🃎 🛛 📑 🍒 🚦
                                      8 📾 🛛 🖄 🗖
                                                                 ? №?
  LP Model for Critical Path Problem
 X<ij> = Denote the flow along arc (i to j) by Xij.
 MAX
       9 X12 + 6 X13 + 8 X35 + 7 X34 + 10 X45 + 12 X56
 SUBJECT TO
 C1) X12 + X13
                            =
                                 1
 C2) X12 - X23
                            =
                                 0
 C3) X13 + X23 - X34 - X35 =
                                 0
 C4) X34 - X45
                            =
                                 0
 C5) X35 + X45 - X56
                             =
                                 0
                             = 1
 C6) X56
 C7) X12 >= 0
 C8) X35 >= 0
 C9) X34 >= 0
 C10) X45 >= 0
 C11) X56 >= 0
```

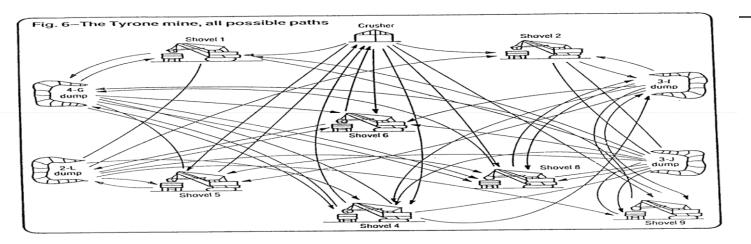
END

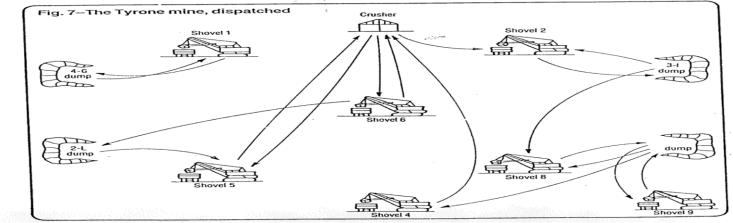
LINDO Output for Critical Path Problem


Activity Network for Example Problem.

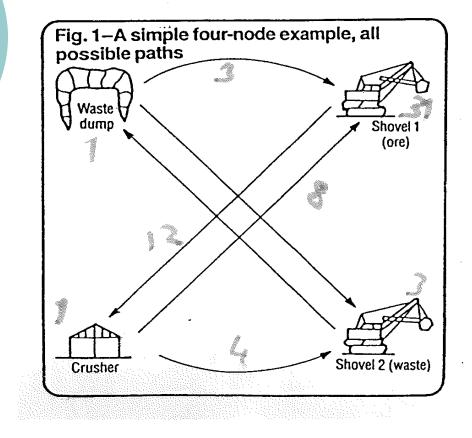

Project Simulation Example (An Activity Network)

Paths	Activities	Lower Limit	Upper Limit							
					You may change the Example by					
1	1	2	4	changing any of th				the values in green.		
	2	2	4							
	3	2	4							
2	1	3	6							
	2	3	6							
3	3	6	12							
			Seed fo	r Random	Numbers	12345	Reset See	d & Run		
Nun	nber of Cu	stomers =	100							
				Si	mulation	Table				
Path 1 Path 2			h 2	Path 3 Completion Times			on Times		Critical	
ctivity 1	Activity 2	Activity 3	Activity 1	Activity 2	Activity 1	Path 1	Path 2	Path 3	Project	Path
3,42	2,50	3,85	4,01	4,63	7,89	9.77	8,64	7,89	9,77	1

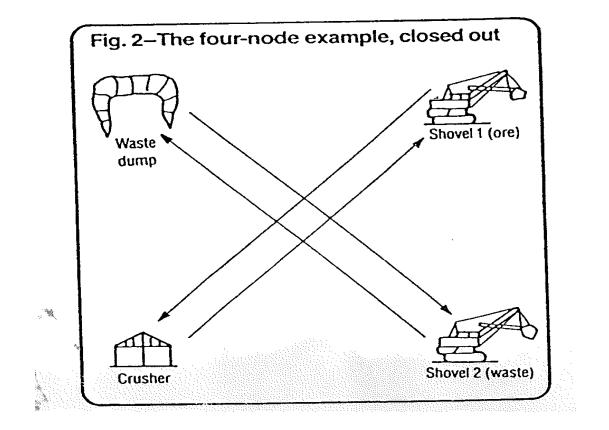

One Simulation Run for Example Problem

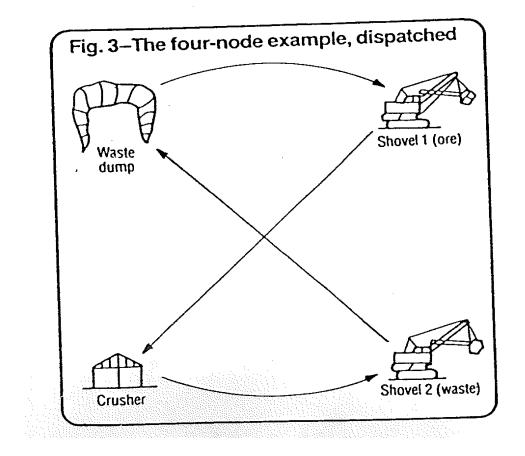


Frequency Distribution for Project Completion Time



Example Problem 1: Tyrone Mine Paper


Open Pit Truck/Shovel Haulage System Optimization (Optimal Route Selection, Four-node example, all possible paths


Table 1 – Four-node pit travel and transaction times

Shovel 1 to crusher	.12 min
Crusher to shovel 1	
Shovel 2 to dump	.12 min
Waste dump to shovel	. 8 min
Crusher to shovel 2	. 4min
Waste dump to shovel	. 3 min
Load at shovel 1	. 3min
Dump at crusher	. 1 min
Load at shovel 2	. 3min
Dump at waste	1 min

Open Pit Truck/Shovel Haulage System Optimization (Optimal Route Selection), Four-node example, Closed out

Open Pit Truck/Shovel Haulage System Optimization (Optimal Route Selection), Four-node example, dispatched

Problem Statement

LP Model Objective Function is: (which automatically maximizes synergy)

Maximizing overall production rate which is equivalent to

- (Maximizing both shovel and truck utilization (i.e: minimum shovel idle time and truck queue times)
- Minimizing total number of trucks required for all shovel coverages without trucks queuing.

This is expressed as a combination of three components as follows:

- \bigcirc Total number of trucks on the road plus (+)
- \bigcirc Total number of trucks at the dumps plus (+)
- Total number of trucks at the shovels

SUBJECT TO:

- O Truck balances around each node (i.e.: continuity and rate-limiting) and
- non-negativity

Assumptions of LP Model

- 1) based on
- shovel digging rates
- \bigcirc dump times
- travel times

Calculated in real time to generate

Optimal Routes for the current pit configuration

- 2) pit is viewed as a fixed (at any snapshot-point in time) number of muck points (sources) and damp points (sink) that are called nodes.
- 3) The nodes are connected by valid transactions routes that are called paths
- 4) some nodes are considered rate-limiting (e.g.: shovels and occasionally the crusher unless temporary ore stockpile is provided).
- 5) leach and waste dumps are assumed as capable of handling all transactions

MATHEMATICAL FORMULATION

Decision Variables for LP Model :

- $\odot\ x_{ij}$: Average number of trucks per min over path i,j (trucks/min)
- $\bigcirc\ t_{ij}$: Average truck travel times in min over path i,j (min)
- \bigcirc t_i: number of minutes it takes to process a truck at node i (min)
- \cap r_i: number of trucks processed at node i per min(trucks/min),
- \cap r_i = 1/t_i

Objective Function:

 $\mathbf{Min} \ \mathbf{Z} =$

$$3x_{13} + 12x_{31} + 8x_{24} + 12x_{42} + 3x_{23} + 4x_{23} + t_1x_{31} + t_2x_{42} + 2$$

MATHEMATICAL FORMULATION Continued

Constraints:

• For waste shovel (rate limiting node);

 $x_{14} + x_{24} - x_{42} = 0$

 $x_{42} - r_4 = 0 \qquad r_4 = 1/t_4$ \bigcirc For ore shovel (rate limiting node); $x_{13} + x_{23} - x_{31} = 0$ $x_{31} - r_3 = 0 \qquad r_3 = 1/t_3$

MATHEMATICAL FORMULATION Continued

○ For waste dump (non-rate limiting node);

 $x_{42} - x_{24} - x_{23} = 0$

○ For crusher (non-rate limiting node)

 $x_{31} - x_{13} - x_{14} = 0$

○ Non-negativity;

 $x_{ij \geq} 0 \text{ for all } i \text{ and } j$

Excel Solver Model for Example Problem

	Giriş Ek	e	Sayfa Düzeni Fo	rmüller	Veri Gözden	Geçir Görünüm Geliş	tirici Eklentiler Pl	DF Archi	itect 6 Creator PDF A	rchitect		- 10
	G17		$ f_{x}$	=TOPL	A(G6:G11)+A11*l	9+A10*l8+2						
	A	в	С	D	E	F	G	н	- I	J	К	L
				Tyre	one Mine F	our-Node Exar	nple Problem	n				
							•					
	Decision Varia	bles				Travel Times	Travel Times *					
(Trucks/Min)		From		То	(min)	Decision Variables					
	0,00	1	Crusher	3	Ore Shovel	8,00	0,00		Processing Times		Continuity Constraints	
	0,00	1	Crusher	4	Waste Shovel	4,00	0,00		(min)	Nodes	Net Flow =Inflow-Outflow	
	0,00	2	Waste Dump	3	Ore Shovel	3,00	0,00	1	1	Crusher	0	0
	0,00	2	Waste Dump	4	Waste Shovel	8,00	0,00	2	1	Waste Dump	0	0
	0,00	3 4	Ore Shovel Waste Shovel	1	Crusher	12,00	0,00	3	3	Ore Shovel Waste Shovel	0	0
	0,00	4	waste Snovel	2	Waste Dump	12,00	0,00	4	3	waste snovel	0	0
-												
									Processing Rates		Rate-limiting Constraints	
T									(Trucks/Min)	Nodes		
								3		Ore Shovel	0	0,333
						Trucks Requied:	2,00	4		Waste Shovel	0	0,333
t						-		b	Çözücü Parametre	leri		
											_	
										<u>G\$17</u>		Çö <u>z</u>
									Değişe <u>n</u> Hücreler:) En <u>B</u> üyük 💿 En Kı	üçük O <u>D</u> eğer: 0	Kapat
									\$A\$6:\$A\$11		Tahmin	
-									Kısıtlamalar:			acapaklar
									\$A\$6:\$A\$11 >=	0	∧ <u>E</u> kle	ieçenek <u>l</u> er
									\$K\$16:\$K\$17 = \$ \$K\$8:\$K\$11 = \$L	L\$16:\$L\$17		
t									ər.əo.ər.ə11 = ŞL			<u>ù</u> münü Sıfirl
t												Yardım
t												Taronn
-												
ŀ												
⊢												
⊢												
	Yanıt Ra		Duyarlılık Rapor			/*						
	Yanıt Ra				Sayfa1 / Sayfa2 /	Sayfa3 🖉 💭						

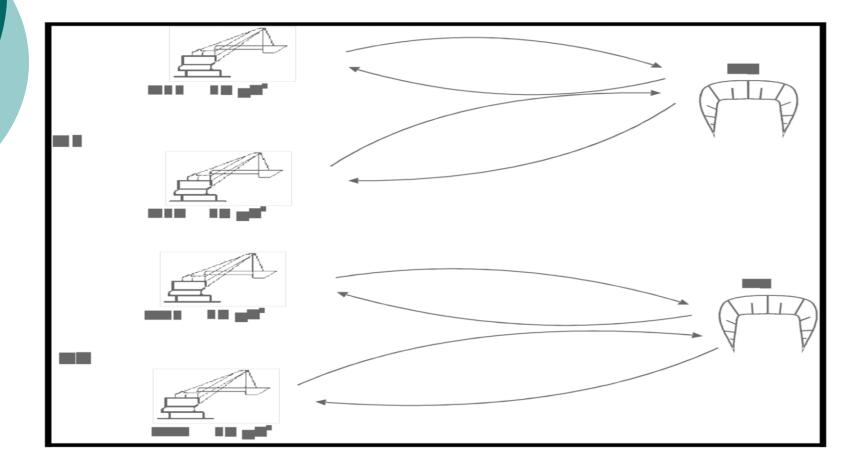
Excel Solver Output for Example Problem

_	Giriş Ek	le S	Sayfa Düzeni 🛛 Fo	rmüller	Veri Gözden	Geçir Görünüm Geliş	tirici Eklentiler Pl	OF Archi	itect 6 Creator PDF A	rchitect		- 🕥
	A 6		▼ (*	D								
	А	в	С	D	E	F	G	н	1	J	к	L
				Tvro	one Mine F	our-Node Exar	nple Problem	1				
				•			•					
D	ecision Varia	bles				Travel Times	Travel Times *					
(Trucks/Min)		From		То	(min)	Decision Variables					
	0,00	1	Crusher	3	Ore Shovel	8,00	0,00		Processing Times		Continuity Constraints	
	0,33	1	Crusher	4	Waste Shovel	4,00	1,33		(min)	Nodes	Net Flow =Inflow-Outflow	= 0
	0,33	2	Waste Dump	3	Ore Shovel	3,00	1,00	1	1	Crusher	0	0
	0,00	2	Waste Dump	4	Waste Shovel	8,00	0,00	2	1	Waste Dump	0	0
	0,33	3	Ore Shovel	1	Crusher	12,00	4,00	3	3	Ore Shovel	0	0
F	0,33	4	Waste Shovel	2	Waste Dump	12,00	4,00	4	3	Waste Shovel	0	0
H												
									Processing Rates		Rate-limiting Constraints	
									(Trucks/Min)	Nodes	react mining constraints	
								3		Ore Shovel	0	0,333
						Trucks Requied:	13,00	4		Waste Shovel	0	0,333
						Trucks Kequieu.	15,00	4		waste snovel	0	0,555
•												
4												
6												
,												
8												
-												
	Yanıt Ra	poru 1	/ Duyarlılık Rapor	u 1 🔰 S	Sayfa1 / Sayfa2 /	Sayfa3 🖉 🎾		1	4			1

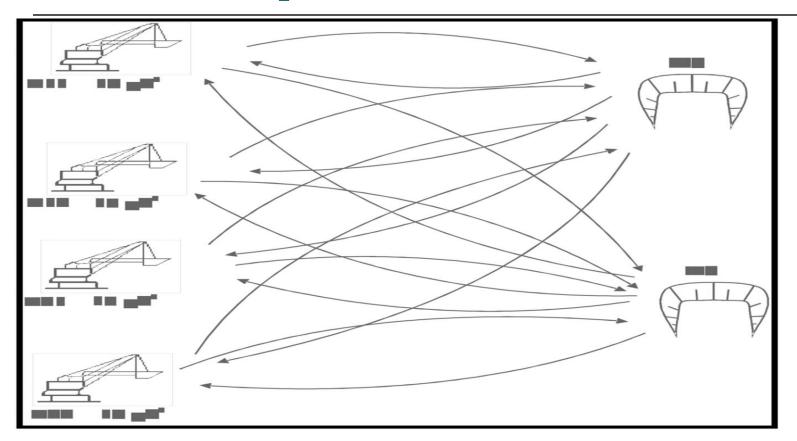
LINDO Program for Four-Node Tyrone Mine Truck/Shovel Optimization Problem

🕰 LINDO - [D:\LINDO61\Samples\truck.ltx]	– 🗆 ×
🞇 File Edit Solve Reports Window Help	_ 5 ×
Dees estates and the second se	
! ! LINDO MODEL FOR FOUR-NODE OPEN PIT TRUCK/SHOVEL SYSTEM	^
: X <ij> = Average number of trucks assigned to path <ij> per minute</ij></ij>	
MIN 13 X13 + 13 X24 + 8 X31 + 8 X42 + 4 x32 + 3 x41 + 2 X0	
SUBJECT TO	
: Node constraints:	
<pre>! (1) - X13 + X31 + X41 = 0 (2) - X13 + X41 + X42 = 0 (2) - X24 + X42 + X32 = 0 (2) X13 - X31 - X32 = 0 (2) X14 - X42 - X41 = 0 (2) X14 = 0.3333333 (2) X42 = 0 (2) X44 =</pre>	

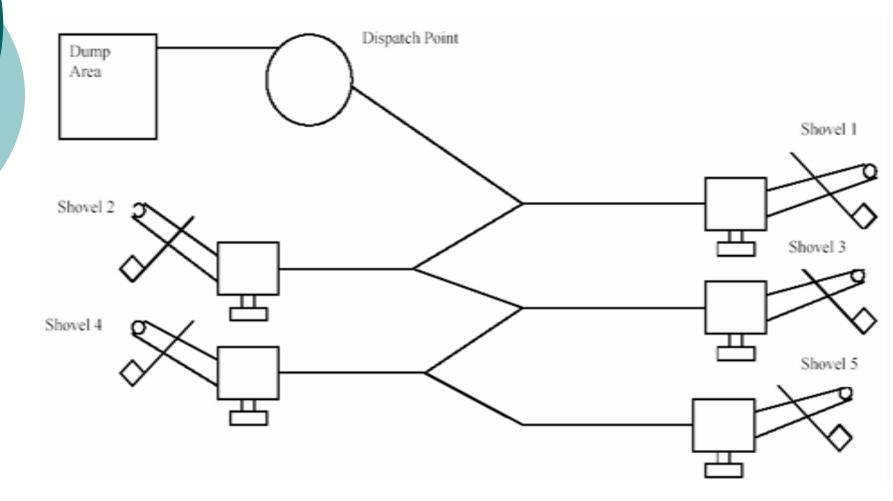
🔳 🔎 🛱 💼 😂 🧁 🔤 🖊 🗣 🌠 🚳 🛷 🎯 🚟

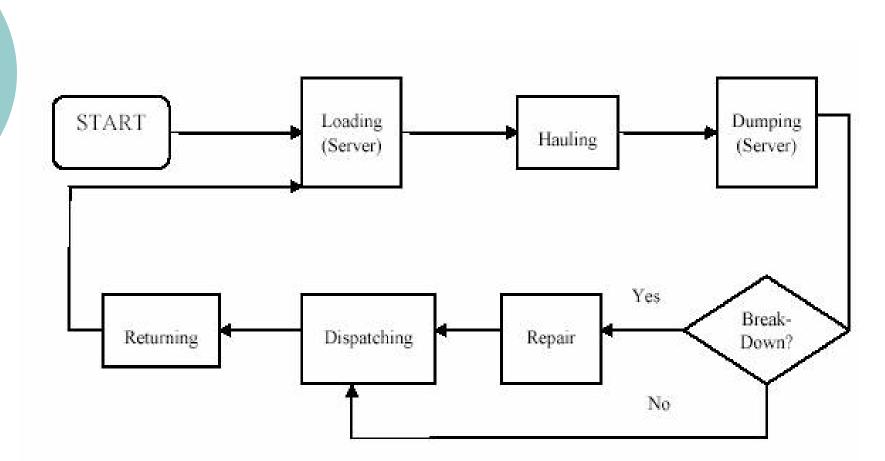

Truck/Shovel Optimization Problem

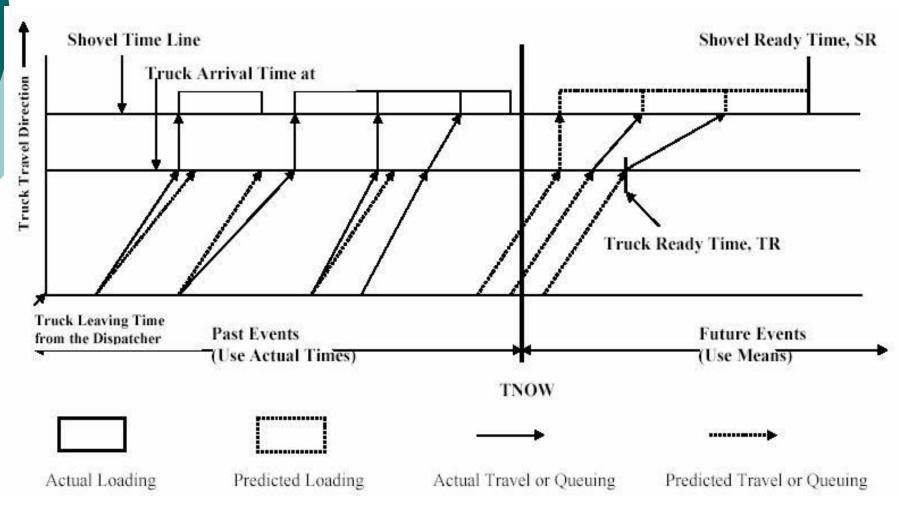
La OLIVIA FOUL A TATE 1 L 2000 VALUATION CONTRACTOR VALUATION C	Reports Wind	low								
1 1.000 VARIAR VALUE VAL	LP OPTIMUM	FOUND AT STEP	1							
VALIANCE VALUE REFUCE C DOUT 124 0.133333 0.000000 124 0.133333 0.000000 124 0.133333 0.000000 125 0.000000 0.000000 124 0.133333 0.000000 125 0.000000 0.000000 126 0.000000 1.000000 126 0.000000 1.000000 126 0.000000 1.000000 126 0.000000 1.000000 126 0.000000 1.000000 126 0.000000 1.000000 126 0.000000 1.000000 126 0.000000 1.000000 126 0.000000 1.000000 126 0.000000 1.000000 127 0.000000 1.000000 128 0.000000 1.000000 129 0.000000 1.000000 120 0.000000 1.000000 121 0.000000 1.000000	OBJE	ECTIVE FUNCTION VAL	UE							
11 0.433333 0.400000 124 0.433333 0.400000 124 0.400000 0.400000 124 0.400000 0.400000 124 0.400000 0.400000 124 0.400000 0.400000 124 0.400000 0.400000 124 0.400000 0.400000 124 0.400000 0.400000 124 0.400000 0.400000 124 0.400000 0.400000 124 0.400000 0.400000 124 0.400000 0.400000 124 0.400000 0.400000 124 0.400000 0.400000 124 0.400000 0.400000 124 0.400000 0.400000 124 0.400000 0.400000 124 0.400000 0.400000 124 0.400000 0.400000 124 0.400000 1.4000000 124 0.400000 1.4000000 124 0.400000 1.4000000 124 0.400000	1)	13.00000								
111 0.00000 11	VADTABLE	VALUE	REDUCED COST							
321 0.00000 4.00000 321 0.00000 4.00000 321 0.00000 0.00000 322 0.00000 0.00000 <td< td=""><td>X13</td><td>0.333333</td><td>0.000000</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></td<>	X13	0.333333	0.000000							
1 0.00000 5.00000 1 0.00000 0.00000 1 0.00000 0.00000 1 0.00000 0.00000 1 0.00000 0.00000 1 0.00000 0.00000 1 0.00000 0.00000 1 0.00000 0.00000 1 0.00000 1.00000 1 0.00000 1.00000 1 0.00000 1.00000 1 0.00000 1.00000 1 0.00000 1.00000 1 0.00000 1.00000 1 0.00000 1.00000 1 0.00000 1.00000 1 0.00000 1.00000 1 0.00000 1.00000 1 0.00000 1.00000 1 0.00000 1.00000 1 0.00000 1.00000 1 0.00000 1.00000 1 0.00000 1.00000 <td< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></td<>										
x33 0.33333 0.00000 x14 0.00000 0.00000 x15 0.00000 0.00000 x14 0.00000 0.00000 x15 0.00000 0.00000 x15 0.00000 0.00000 x16 0.00000 0.00000 x10 0.00000 0.00000 x11 0.00000 0.00000 x12 0.00000 0.00000 x13 0.00000 0.00000 x13 0.00000 0.00000 x14 0.00000 0.00000 <td< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></td<>										
N0 1.000000 0.000000 N1 0.000000 0.000000 C1 0.000000 0.000000 C2 0.000000 0.000000 C3 0.000000 0.000000 C4 0.000000 0.000000 C4 0.000000 0.000000 C4 0	X32	0.333333								
X14 0.00000 0.00000 X15 0.000000 0.000000 X15 0.000000 1.000000 X16 0.000000 1.000000 X17 0.000000 1.000000 X18 0.000000 1.000000 X19 0.000000 1.000000 X10 0.000000 1.000000 X11 1.000000 1.000000 X12 1.000000 1.000000 X12 1.000000 1.000000 X14 1.000000 1.000000 X14 1.000000 1.000000 X14 1.000000 1.000000 X14 0.00000 1.000000 X14 0.00000 <t< td=""><td></td><td>0.333333</td><td>0.000000</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<>		0.333333	0.000000							
C1) 0.00000 0.00000 C3 0.00000 1.000000 C4 0.00000 1.000000 C5 0.00000 1.000000 C5 0.00000 1.000000 C5 0.00000 1.000000 C5 0.00000 0.000000 C5 0.00000 0.00000 C5 0.0000										
C1) 0.00000 0.00000 C3 0.00000 1.000000 C4 0.00000 1.000000 C5 0.00000 1.000000 C5 0.00000 0.100000 C5 0.00000 0.000000 C5 0.00000 0.00000 C5 0.00000 0.000000 C5 0.00000 0.00000 C5 0.00000 C5 0.00000 0.	ROW	SLACK OR SURPLUS	DUAL PRICES							
C0) 0.000000 4.000000 C0 0.000000 1.000000 C0 0.000000 1.000000 C10 0.000000 0.000000 C10 0.000000 0.000000 C10 0.000000 0.000000 C10 0.000000 0.000000 C11 0.000000 0.000000 C12 0.000000 0.000000 C13 0.000000 0.000000 C14 0.000000 INFRINTY C14 COPF INFRINTY X14 0.000000	C1)	0.000000	0.000000							
C3) 0.000000 - J-7.00000 C3) 0.020000 - J-7.00000 C4) 0.233333 - J-00000 C5) 0.233333 - J-00000 C5) 0.233333 - J-00000 C1) 0.00000 - J-00000 C1) 0.233333 - J-00000 C1) 0.20000 - J-00000 C1) 0.233333 - J-00000 C1) 0.20000 - J-J-00000 C1) 0.20000 - J-00000 C1) 0.00000 - J-0000										
CB) 0.000000 -17.000000 CB) 0.000000 -18.000000 CB) 0.000000 -18.000000 CB) 0.000000 0.000000 CB) 0.000000 0.000000 CB) 0.000000 0.000000 CB) 0.000000 0.000000 CB) 0.000000 -2.000000 CB) 0.000000 -2.000000 CB) 0.000000 -2.000000 NO. ITERATIONS= 1 CARTABLE CURRENT ALLORABLE COF TINCREASE DECREASE X14 1.000000 INFINITY X14 1.000000 INFINITY X14 1.000000 INFINITY X14 0.00000 INFINITY X14 0.000000 INFINITY X14										
C7) 0.32333 0.00000 C0) 0.000000 0.000000 C10) 0.000000 0.000000 C11) 0.000000 0.000000 C12) 0.323233 0.000000 C110 0.300000 0.000000 C12) 0.323233 0.000000 C12) 0.323233 0.000000 C110 0.323233 0.000000 C111000000 0.000000 0.000000 C1110000000 0.000000 0.000000 C000000 0.000000 0.000000 C000000 0.000000 0.000000 C000000 0.000000 0.000000 X13 13.000000 0.000000 X14 13.000000 0.000000 X12 0.000000 0.000000 X13 0.000000 0.000000 X14	C5)	0.00000	-17.000000							
CB) 0.000000 0.000000 CB) 0.000000 0.000000 CB) 0.000000 0.000000 CB) 0.000000 0.000000 CB) 0.000000 -2.000000 CB) 0.000000 -2.000000 CB) 0.000000 -2.000000 CB) 0.000000 -2.000000 CB) CCPTFICINT RANGED: CARDES IN WHICH THE BASIS IS UNCHANGED: CDS COPFFICIENT RANGES TAILS CURRENT ALLOWABLE ALLOWABLE X14 1.000000 INFINITY NEWTHY X14 1.000000 INFINITY NEWTHY X14 0.00000 INFINITY NEWTHY X14 0.000000										
CP) 0.38333 0.00000 C10 0.00000 0.00000 C13 0.093000 -2.00000 C13 0.093000 -2.00000 C13 0.00000 -2.00000 C14 0.00000 INFINITY X14 0.000000 INFINITY X24 12.00000 INFINITY X24 0.000000 INFINITY X20										
C11) 0.000000 0.000000 C12) 0.000000 -2.000000 00. I I I I UNITIONS I INTIONS INTIGNATION INTIONS <		0.333333	0.000000							
C13) 0.000000 -2.000000 C13) 0.000000 -2.000000 C0. ITERATIONS* 1 Cost colspan="2">Cost cols										
C13) 0.00000 -2.00000 NO. ITERATIONS 1 NO. ITERATIONS 1 TRADES IN WHICH THE BASIS IS UNCHANGED: Observation Distribution TAILAGE IN WHICH THE BASIS IS UNCHANGED: Distribution TAILAGE IN UNCHANGED: Di		0.000000	0.000000							
ANGES IN WHICH THE BASIS IS UNCHANGED:										
OBJ COEFFICIENT RANGES CARLABLE CURRENT ALLOWABLE ALLOWABLE X13 13.00000 INFINITY INFINITY X14 13.00000 INFINITY INFINITY X24 0.00000 INFINITY INFINITY X21 8.00000 INFINITY 4.00000 X22 4.000000 INFINITY 0.00000 X23 4.000000 INFINITY INFINITY X14 0.00000 INFINITY 0.00000 X23 4.000000 INFINITY INFINITY X14 0.00000 INFINITY 0.00000 X14 0.00000 INFINITY 0.00000 X14 0.00000 0.000000 0.00000 X14 0.00000 0.000000 0.000000 X14 0.00000 0.000000 0.000000 X14 0.000000 0.000000 0.000000 X14 0.000000 0.000000 0.000000 X12 0.000000 0.000000 0.000000 <th>NO. ITERATI</th> <th>IONS= 1</th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th>	NO. ITERATI	IONS= 1								
UARIBALE CURENT ALLOWABLE ALLOWABLE X13 13.00000 INFINITY INFINITY X14 13.00000 INFINITY INFINITY X24 13.00000 INFINITY INFINITY X31 8.000000 INFINITY 4.00000 X42 8.000000 INFINITY 5.000000 X41 6.000000 INFINITY 5.000000 X41 6.000000 INFINITY 6.000000 X41 6.000000 INFINITY 6.000000 X41 6.000000 INFINITY 6.000000 X41 6.000000 6.000000 6.000000 X41 6.000000 6.000000 6.000000 X41 6.000000 0.000000 6.000000 C2 0.000000 0.000000 0.000000 C3 0.000000 0.000000 6.000000 C4 0.000000 0.000000 6.000000 C5 6.333333 0.000000 6.000000 C4 <	RANGES IN W									
X13 13.000000 INFINITY INFINITY X24 13.000000 INFINITY INFINITY X31 5.000000 INFINITY 5.000000 X32 4.000000 INFINITY 5.000000 X31 3.000000 INFINITY 5.000000 X32 4.000000 INFINITY 5.000000 X41 3.000000 INFINITY 0.000000 X14 0.000000 INFINITY 0.000000 X14 0.000000 INFINITY 0.000000 X14 0.000000 0.000000 0.000000 C1 0.000000 0.000000 0.000000 C2 0.000000 0.000000 0.000000 C3 0.000000 0.000000 0.000000 C4 0.000000 0.000000 0.000000 C5 0.33333 0.000000 0.000000 C6 0.333333 0.000000 0.000000 C7 0.000000 0.000000 0.000000 C8 0.000000 0.000000 0.000000 C9 0.000000			COEFFICIENT RANG							
X31 8.000000 INFINITY 4.000000 X32 4.000000 INFINITY 5.000000 X32 4.000000 INFINITY 5.000000 X41 3.000000 INFINITY INFINITY X14 0.00000 INFINITY 0.000000 X14 0.00000 INFINITY 0.000000 X14 0.000000 INFINITY 0.000000 X14 0.000000 0.000000 0.000000 X15 0.000000 0.000000 0.000000 X14 0.000000 0.000000 0.000000 X14 0.000000 0.000000 0.000000 X14 0.000000 0.000000 0.000000 X14 0.000000	VARIABLE			ALLOWABLE						
X42 8.000000 INFINITY 5.00000 X41 3.000000 5.000000 INFINITY X41 3.000000 INFINITY INFINITY X14 0.000000 INFINITY 0.000000 X14 0.000000 INFINITY 0.000000 X14 0.000000 INFINITY 0.000000 X14 0.000000 INFINITY 0.000000 X14 0.000000 0.000000 0.000000 X15 INCREASE DECREASE DECREASE C1 0.000000 0.000000 0.000000 C2 0.000000 0.000000 0.000000 C3 0.000000 0.000000 0.000000 C4 0.000000 0.000000 0.000000 C5 0.333333 0.000000 0.000000 C6 0.333333 INFINITY C8 0.000000 0.000000 C9 0.000000 0.000000 C11 0.000000 0.000000 C12 0.000000 0.033333		COEF	INCREASE	ALLOWABLE DECREASE						
X32 4.000000 1.000000 INFINITY X41 3.000000 INFINITY INFINITY X0 2.000000 INFINITY 0.000000 X14 0.000000 INFINITY 0.000000 X14 0.000000 INFINITY 0.000000 X14 0.000000 0.000000 0.000000 X14 0.000000 0.000000 0.000000 X16 0.000000 0.000000 0.000000 X16 0.000000 0.000000 0.000000 X17 ALCORABLE ALCORABLE ALCORABLE X18 0.000000 0.000000 0.000000 X19 0.000000 0.000000 0.000000 X2 0.000000 <	X13 X24	COEF 13.000000 13.000000	INCREASE INFINITY INFINITY	ALLOWABLE DECREASE INFINITY INFINITY						
X41 3.000000 S.000000 INFINITY X0 0.000000 INFINITY INFINITY X14 0.000000 INFINITY 0.000000 B INFRAMES B B C1 0.000000 0.000000 0.000000 C2 0.000000 0.000000 0.000000 C3 0.000000 0.000000 0.000000 C4 0.000000 0.000000 0.000000 C5 0.333333 0.000000 0.000000 C6 0.333333 INFINITY C7 0.000000 0.000000 C9 0.000000 0.000000 C10 0.000000 INFINITY C11 0.000000 INFINITY C12 0.000000 INFINITY C13 0.000000 INFINITY	X13 X24 X31	COEF 13.000000 13.000000 8.000000	INCREASE INFINITY INFINITY INFINITY	ALLOWABLE DECREASE INFINITY INFINITY 4.000000						
X14 0.00000 INFINITY 0.00000 INFINITY 0.00000 INFINITY 0.00000 INFINITY 0.00000 INFINITY 0.00000 INFINITY 0.00000 INFINITY INFINITY INFINITY INFINITY INFINITY INFINITY INFINITY INFINITY INFINITY <td>X13 X24 X31 X42</td> <td>COEF 13.000000 13.000000 8.000000 8.000000</td> <td>INCREASE INFINITY INFINITY INFINITY INFINITY</td> <td>ALLOWABLE DECREASE INFINITY INFINITY 4.000000 5.000000</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>	X13 X24 X31 X42	COEF 13.000000 13.000000 8.000000 8.000000	INCREASE INFINITY INFINITY INFINITY INFINITY	ALLOWABLE DECREASE INFINITY INFINITY 4.000000 5.000000						
RIGHTHAND SIDE RANGES ROW CURRINT RHS ALLOWABLE DECREASE C1 0.00000 0.000000 C2 0.00000 0.000000 C3 0.00000 0.000000 C4 0.00000 0.000000 C5 0.32333 0.000000 C6 0.33333 0.000000 C7 0.00000 0.000000 C8 0.00000 0.000000 C9 0.00000 0.000000 C9 0.00000 0.000000 C1 0.000000 0.000000 C1 0.000000 0.000000 C1 0.000000 0.000000 C3 0.000000 0.000000 C4 0.000000 0.000000 C5 0.33333 0.000000 C6 0.000000 0.000000 C7 0.000000 0.000000 C9 0.000000 0.000000 C11 0.000000 0.000000 C12 0.000000	X13 X24 X31 X42 X32	COEF 13.000000 13.000000 8.000000 8.000000 4.000000	INCREASE INFINITY INFINITY INFINITY INFINITY 4.000000	ALLOWABLE DECREASE INFINITY INFINITY 4.000000 5.000000 INFINITY						
ROW CURRNT RHS ALLOWABLE DCCRASE C1 0.00000 0.000000 0.00000 C2 0.00000 0.000000 0.00000 C3 0.00000 0.000000 0.00000 C4 0.00000 0.000000 0.00000 C4 0.00000 0.000000 0.00000 C5 0.33333 0.000000 0.000000 C6 0.33333 0.000000 0.000000 C6 0.000000 0.000000 0.000000 C7 0.000000 0.000000 INFINITY C8 0.000000 0.000000 INFINITY C9 0.000000 0.000000 INFINITY C10 0.000000 INFINITY INFINITY C11 0.000000 0.030000 INFINITY C12 0.000000 0.030000 INFINITY	X13 X24 X31 X42 X32 X41 X0	COEF 13.000000 3.000000 8.000000 4.000000 3.000000 2.000000	INCREASE INFINITY INFINITY INFINITY 4.000000 5.000000 INFINITY	ALLOWABLE DECREASE INFINITY 4.00000 5.000000 INFINITY INFINITY INFINITY						
C1 0.000000 0.000000 0.000000 C2 0.000000 0.000000 0.000000 C3 0.000000 0.000000 0.000000 C4 0.000000 0.000000 0.000000 C5 0.33333 0.000000 0.000000 C6 0.33333 0.000000 0.000000 C7 0.000000 0.33333 INFINITY C8 0.000000 0.000000 INFINITY C9 0.000000 0.000000 INFINITY C10 0.000000 0.000000 INFINITY C11 0.000000 0.000000 INFINITY C12 0.000000 0.33333 INFINITY	X13 X24 X31 X42 X32 X41 X0	COEF 13.000000 13.000000 8.000000 4.000000 3.000000 2.000000 0.000000	INCREASE INFINITY INFINITY INFINITY 4.000000 5.000000 INFINITY INFINITY	ALLOWABLE DECREASE INFINITY 4.000000 5.000000 INFINITY INFINITY INFINITY 0.000000						
C2 0.000000 0.000000 0.000000 C3 0.000000 0.000000 0.000000 C4 0.000000 0.000000 0.000000 C5 0.323232 0.000000 0.000000 C6 0.333333 0.000000 0.000000 C7 0.000000 0.333333 INFINITY C8 0.000000 0.000000 INFINITY C9 0.000000 0.000000 INFINITY C10 0.000000 0.000000 INFINITY C11 0.000000 0.033333 INFINITY C12 0.000000 0.333333 INFINITY	X13 X24 X31 X42 X32 X41 X0 X14	COEF 13.000000 13.000000 8.000000 4.000000 3.000000 0.000000 0.000000 RIG CURRENT	INCREASE INFINITY INFINITY INFINITY 4.000000 5.000000 INFINITY INFINITY INFINITY HIHAND SIDE RANGE ALLOWABLE	ALLOWABLE DECREASE INFINITY 4.000000 S.0000000 INFINITY INFINITY INFINITY ALLOWABLE						
C4 0.00000 0.00000 0.00000 C5 0.32323 0.000000 0.00000 C6 0.33333 0.000000 0.00000 C7 0.000000 0.33333 INFINITY C8 0.000000 INFINITY C9 0.000000 0.000000 C10 0.000000 INFINITY C11 0.000000 INFINITY C12 0.000000 INFINITY	X13 X24 X31 X42 X32 X41 X0 X14 ROW	COEF 12.000000 8.000000 4.000000 2.000000 2.000000 0.000000 RIG CURRENT RHS	INCREASE INFINITY INFINITY INFINITY INFINITY 4.000000 5.000000 INFINITY INFINITY INFINITY HITHAND SIDE RANGE ALLOWABLE INCREASE	ALLOWABLE DECREASE INFINITY 4.00000 5.00000 INFINITY INFINITY 0.00000 3 ALLOWABLE DECREASE						
C5 0.33233 0.000000 0.000000 C6 0.33233 0.000000 0.000000 C7 0.000000 0.32333 INFINITY C8 0.000000 0.000000 INFINITY C9 0.000000 0.32333 INFINITY C10 0.000000 INFINITY C11 0.000000 INFINITY C12 0.000000 INFINITY	X13 X24 X31 X42 X32 X41 X0 X14 ROW	COEF 13.000000 13.000000 8.000000 4.000000 2.000000 0.000000 CURRENT RHS 0.000000	INCREASE INFINITY INFINITY INFINITY 4.000000 5.000000 INFINITY INFINITY INFINITY HIHAND SIDE RANGE ALLOWABLE INCREASE 0.000000	ALLOWABLE DECREASE INFINITY 4.000000 S.000000 INFINITY INFINITY INFINITY O.000000 S ALLOWABLE DECREASE O.000000						
C6 0.323233 0.000000 0.00000 C7 0.000000 0.32333 INFINITY C8 0.000000 0.000000 INFINITY C9 0.000000 0.33333 INFINITY C10 0.000000 INFINITY C11 0.000000 INFINITY C12 0.000000 INFINITY	X13 X24 X31 X42 X32 X41 X0 X14 ROW C1 C2 C3	COEF 13.000000 13.000000 8.000000 3.000000 3.000000 0.000000 CURRENT RHS 0.000000 0.000000 0.000000	INCREASE INFINITY INFINITY INFINITY 4.000000 5.000000 INFINITY INFINITY INFINITY HIAND SIDE RANGE ALLOWABLE 0.000000 0.0000000	ALLOWABLE DECREASE INFINITY 4.00000 5.00000 INFINITY INFINITY INFINITY O.000000 3 ALLOWABLE DECREASE 0.000000 0.000000						
C7 0.000000 0.33333 INFINITY C8 0.000000 INFINITY C9 0.000000 0.33333 INFINITY C10 0.000000 INFINITY C11 0.000000 INFINITY C12 0.000000 INFINITY	X13 X24 X31 X42 X42 X41 X0 X14 ROW C1 C2 C3 C3 C4	COEF 12.000000 12.000000 8.000000 4.000000 2.000000 0.000000 RIG CURRENT RHS 0.000000 0.000000 0.000000 0.000000	INCREASE INFINITY INFINITY INFINITY 4.000000 5.000000 INFINITY INFINITY HITAND SIDE RANGE ALLOWABLE INCREASE 0.000000 0.000000 0.000000	ALLOWABLE DECREASE INFINITY 4.00000 5.00000 INFINITY INFINITY 0.00000 5 ALLOWABLE DECREASE 0.00000 0.000000 0.000000 0.000000						
C9 0.000000 0.33333 INFINITY C10 0.000000 INFINITY C11 0.000000 INFINITY C11 0.000000 0.33333 INFINITY C12 C1.000000 0.33333	X13 X24 X31 X42 X41 X0 X14 ROW C1 C2 C3 C4 C5	COEF 13.000000 13.000000 8.000000 4.000000 2.000000 0.000000 CURRENT RHS 0.000000 0.000000 0.000000 0.000000 0.000000	INCREASE INFINITY INFINITY INFINITY 4.000000 5.000000 INFINITY INFINITY HINAND SIDE RANGE ALLOWABLE 0.000000 0.000000 0.000000 0.000000 0.000000	ALLOWABLE DECREASE INFINITY 4.00000 5.00000 INFINITY INFINITY INFINITY 0.000000 3 ALLOWABLE DECREASE 0.000000 0.000000 0.000000 0.000000						
C10 0.000000 0.000000 INFINITY C11 0.000000 0.000000 INFINITY C12 0.000000 0.333333 INFINITY	X13 X24 X31 X42 X32 X41 X0 X14 C1 C2 C3 C4 C5 C6 C7	COEF 13.000000 13.000000 8.000000 4.000000 2.000000 0.000000 CURRENT RHS 0.000000 0.000000 0.000000 0.000000 0.000000	INCREASE INFINITY INFINITY INFINITY 4.000000 5.000000 INFINITY INFINITY INFINITY INFINITY HATHAD SIDE RANGE ALLOWABLE 0.000000 0.000000 0.000000 0.000000 0.000000	ALLOWABLE DECREASE INFINITY 4.00000 5.00000 INFINITY INFINITY INFINITY 0.000000 3 ALLOWABLE DECREASE 0.000000 0.000000 0.000000 0.000000 INFINITY						
C11 0.000000 0.000000 INFINITY C12 0.000000 0.33333 INFINITY	X13 X24 X31 X42 X41 X0 X14 ROW C1 C2 C3 C4 C5 C6 C7 C8	COEF 13.000000 13.000000 8.000000 4.000000 2.000000 2.000000 CURRENT RHS 0.000000 0.000000 0.000000 0.333333 0.000000 0.333333 0.000000	INCREASE INFINITY INFINITY INFINITY 4.000000 5.000000 INFINITY INFINITY INFINITY HTHAND SIDE RANGE ALLOWABLE INCREASE 0.000000 0.000000 0.000000 0.000000 0.000000	ALLOWABLE DECREASE INFINITY 4.00000 5.00000 INFINITY INFINITY 0.000000 5 BECREASE 0.000000 0.000000 0.000000 0.000000 0.000000						
C12 0.000000 0.333333 INFINITY C13 1.000000 INFINITY 1.000000	X13 X24 X31 X42 X32 X41 X0 X14 C1 C2 C3 C4 C5 C6 C7 C5 C6 C7 C8 C9	COEF 13.000000 13.000000 8.000000 4.00000 2.000000 0.000000 CURRENT RHS 0.000000 0.000000 0.000000 0.000000 0.000000	INCREASE INFINITY INFINITY INFINITY 4.000000 5.000000 INFINITY INFINITY INFINITY HIHAND SIDE RANGE ALLOWABLE 0.000000 0.000000 0.000000 0.000000 0.000000	ALLOWABLE DECREASE INFINITY 4.00000 5.00000 INFINITY INFINITY INFINITY 0.000000 3 ALLOWABLE DECREASE 0.000000 0.000000 0.000000 0.000000 0.000000						
	X13 X24 X31 X42 X32 X41 X0 X14 ROW C1 C2 C3 C4 C5 C6 C7 C5 C6 C7 C5 C7 C10 C11	COEF 13.000000 13.000000 8.000000 4.00000 2.000000 0.000000 CURRENT RHS 0.000000 0.000000 0.000000 0.000000 0.000000	INCREASE INFINITY INFINITY INFINITY 4.000000 5.000000 INFINITY INFINITY INFINITY HIHAND SIDE RANGE ALLOWABLE 0.000000 0.000000 0.000000 0.000000 0.000000	ALLOWABLE DECREASE INFINITY 4.00000 5.00000 INFINITY INFINITY 0.00000 3 ALLOWABLE DECREASE 0.00000 0.00000 0.00000 0.000000 0.000000						
	X13 X24 X31 X42 X41 X0 X14 ROW C1 C2 C3 C4 C5 C6 C7 C8 C9 C10 C11 C12	COEF 13.000000 13.000000 8.000000 4.000000 2.000000 2.000000 0.000000 CURRENT RHS 0.000000 0.000000 0.000000 0.000000 0.333333 0.000000 0.333333 0.000000 0.000000 0.000000 0.000000 0.000000	INCREASE INFINITY INFINITY INFINITY 4.000000 5.000000 INFINITY INFINITY INFINITY HTHAND SIDE RANGE ALLOWADLE INCREASE 0.000000 0.000000 0.000000 0.000000 0.000000	ALLOWABLE DECREASE INFINITY 4.00000 5.00000 INFINITY INFINITY 0.00000 5 DECREASE DECREASE 0.00000 0.00000 0.00000 0.000000 0.000000						
	X13 X24 X31 X42 X42 X41 X0 X14 ROW C1 C2 C3 C4 C5 C6 C7 C8 C9 C10 C11 C12	COEF 13.000000 13.000000 8.000000 4.000000 2.000000 2.000000 0.000000 CURRENT RHS 0.000000 0.000000 0.000000 0.000000 0.333333 0.000000 0.333333 0.000000 0.000000 0.000000 0.000000 0.000000	INCREASE INFINITY INFINITY INFINITY 4.000000 5.000000 INFINITY INFINITY INFINITY HTHAND SIDE RANGE ALLOWADLE INCREASE 0.000000 0.000000 0.000000 0.000000 0.000000	ALLOWABLE DECREASE INFINITY 4.00000 5.00000 INFINITY INFINITY 0.00000 5 DECREASE DECREASE 0.00000 0.00000 0.00000 0.000000 0.000000						
	X13 X24 X31 X42 X42 X41 X0 X14 ROW C1 C2 C3 C4 C5 C6 C7 C8 C9 C10 C11 C12	COEF 13.000000 13.000000 8.000000 4.000000 2.000000 2.000000 0.000000 CURRENT RHS 0.000000 0.000000 0.000000 0.000000 0.333333 0.000000 0.333333 0.000000 0.000000 0.000000 0.000000 0.000000	INCREASE INFINITY INFINITY INFINITY 4.000000 5.000000 INFINITY INFINITY INFINITY HTHAND SIDE RANGE ALLOWADLE INCREASE 0.000000 0.000000 0.000000 0.000000 0.000000	ALLOWABLE DECREASE INFINITY 4.00000 5.00000 INFINITY INFINITY 0.00000 5 DECREASE DECREASE 0.00000 0.00000 0.00000 0.000000 0.000000						

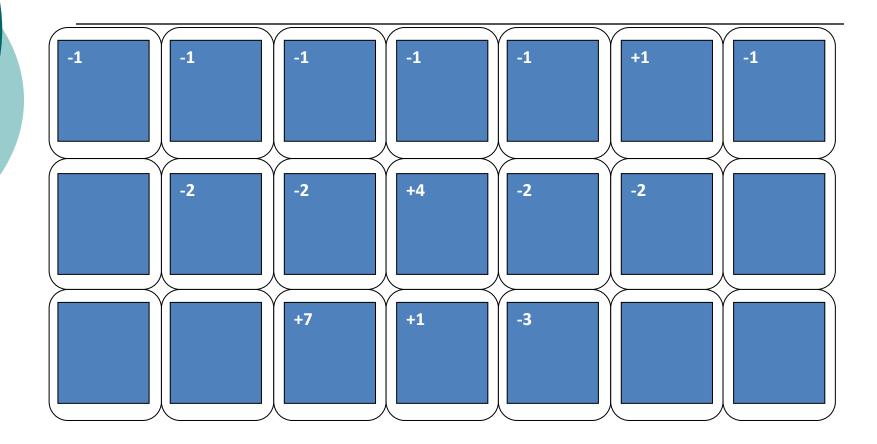

Input Data for Case Study Problem

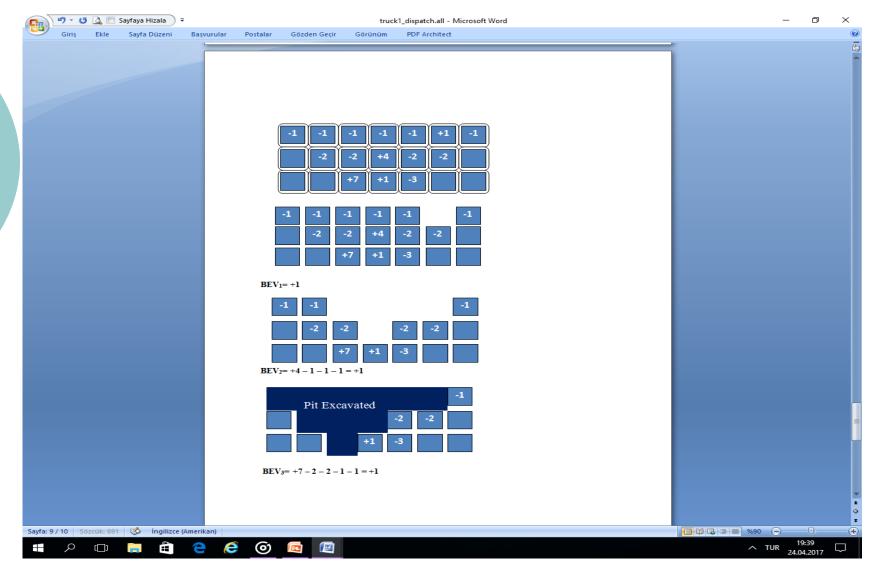
Lengths and travelling times for possible paths								
Path	Path length (m)	Travel loaded (min)	Travel empty (min)					
S11-W5 S11-W6 S12-W5 S12-W6 S21-W5 S21-W6 S22-W6 S22-W6	780 1205 2615 1068 1500 1874 1337 1753	2.5 5.4 6.5 4.7 6.0 8.0 5.7 7.5	1.5 3.9 4.6 3.0 4.6 5.3 4.2 5.0					

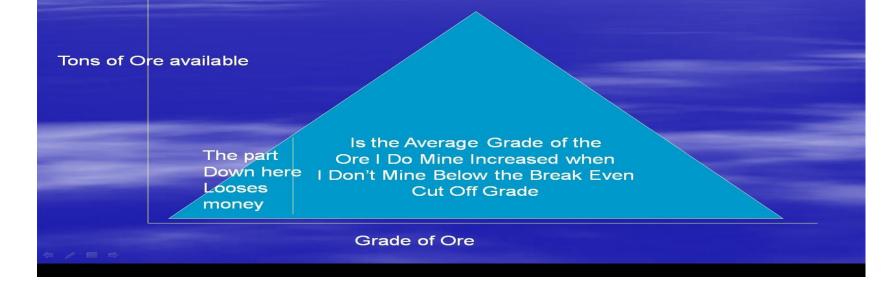

Shovel-Truck System as Closed-Out System


All possible Truck Paths


A Typical Truck-Shovel Mining System

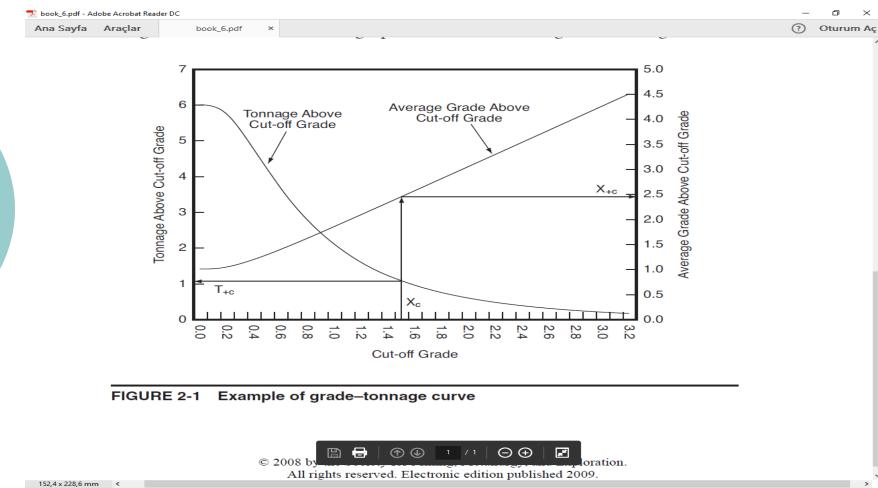

Truck-Shovel Modeling Concept Discrete-Event-System Simulation Approach


An Example Shovel Loading Gantt Chart


Example Problem2:Ultimate Pit Limit Design by Positive Moving Cone Algorithm

Ultimate Pit Limit Design by Positive Moving Cone Algorithm Con't

Suppose We Have Ore With The Following Grade Distribution

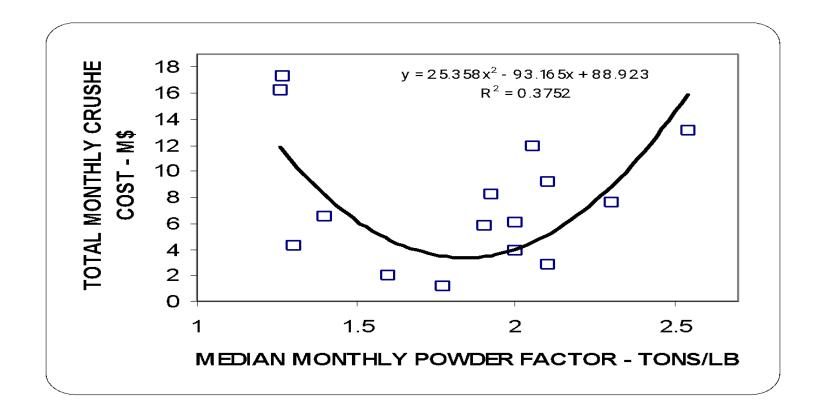


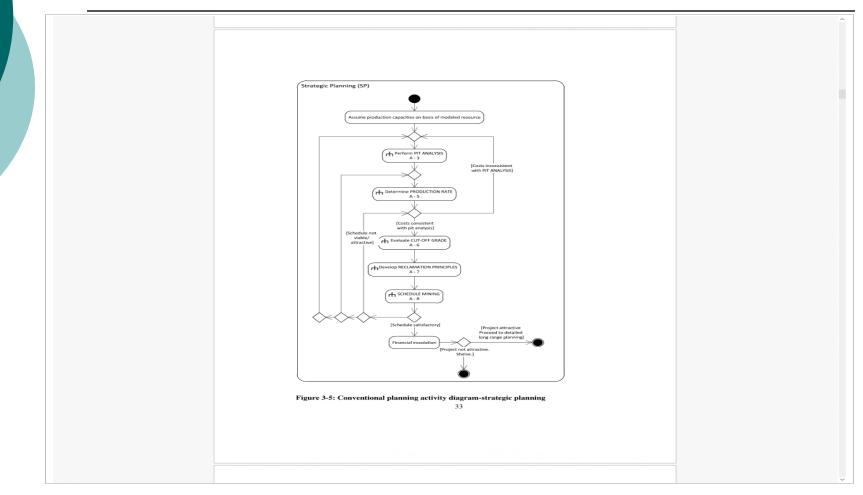
Example Problem3: Cutoff Grade Optimization Problem Con't

Grade Category	Grade Category	Tonnage×100
Mid Point	(ons/ton)	(ton)
(ons/ton)		
0,001	0 - 0,02	70000
0,0225	0,02 - 0,025	7257
0,0275	0,025 - 0,030	6319
0,0325	0,030 - 0,035	5591
0,0375	0,035 - 0,040	4598
0,0425	0,040 - 0,045	4277
0,0475	0,045 - 0,050	3465
0,0525	0,050 - 0,055	2428
0,0575	0,055 - 0,060	2307
0,0625	0,060 - 0,065	1747
0,0675	0,065 - 0,070	1640
0,0725	0,070 - 0,075	1485
0,0775	0,075 - 0,080	1227
0,0090	0,080 - 0,1	3598
0,229	0,1 - 0,358	9576

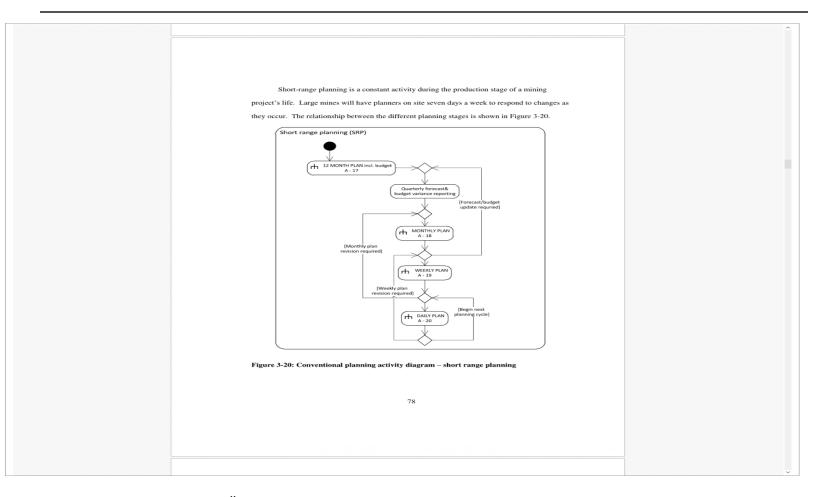
DPÜ, Faculty of Engineering, Mining Eng. Dept.

3-7 October 2022, Kütahya, Turkey




Grade Category	Grade Category	Tonnage×100
Mid-Point	(ons/ton)	(ton)
(ons/ton)		
0,001	0 - 0,02	70000
0,0225	0,02 - 0,025	7257
0,0275	0,025 - 0,030	6319
0,0325	0,030 - 0,035	5591
0,0375	0,035 - 0,040	4598
0,0425	0,040 - 0,045	4277
0,0475	0,045 - 0,050	3465
0,0525	0,050 - 0,055	2428
0,0575	0,055 - 0,060	2307
0,0625	0,060 - 0,065	1747
0,0675	0,065 - 0,070	1640
0,0725	0,070 - 0,075	1485
0,0775	0,075 - 0,080	1227
0,0090	0,080 - 0,1	3598
0,229	0,1 - 0,358	9576
Total		125000

Cutoff Grade Optimization Problem Con't


Optimization of Blasting Design

Activity Diagram for Strategic Planning

Activity Diagram for Short-Range Planning

3-7 October 2022, Kütahya, Turkey

Thank you for your Attention.